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ABSTRACT 
This work employs the uncertainty quantification 

method to systematically analyze the power consumption 

and forming voltage in RRAM devices, emphasizing the 

significant role of material factors in multiscale and 

multiphysics processes. The uncertainty quantification 

approach drives a macroscopic-scale thermoelectric 

model to simulate RRAM switching and identifies key 

parameters. Furthermore, the same approach is adopted to 

control a mesoscale phase-field model that simulates the 

kinetics of conductive filament evolution. The results of 

the two models complement each other and provide a 

better understanding of the dynamics occurring inside the 

RRAM device and the origin of the performance 

uncertainty.  

INTRODUCTION 

Resistive Random Access Memory (RRAM) is a 

nonvolatile memory that operates by switching resistance 

between the formation and the rupture of the conductive 

filament (CF), corresponding to the binary states of ‘0’ 

and ‘1’. RRAM is regarded as the leading contender for 

future memory technologies, due to its compelling 

features such as high storage capacity, fast write-read 

speed, low power consumption, and excellent scalability 

[1]. However, the uncertainty of the microstructure in the 

materials and microprocesses occurring in the device 

makes the control of RRAM a challenging task. Therefore, 

an Integrated Computational Materials Engineering 

(ICME) approach is desirable and essential to 

systematically examine the behavior of RRAM by 

considering multiscale microstructures and multiphysics 

processes. In addition, incorporating uncertainty 

quantification (UQ) analysis into the ICME framework 

can enhance its ability to address uncertainty in RRAM 

devices. Here, two models of different scales are 

introduced, i.e., a model at the macroscopic scale with 

coupled thermal and electrical physics based on finite 

element analysis (hereafter referred to as FE model) and a 

mesoscopic scale phase-field (PF) model, and the UQ 

method are used to systematically explore the influence of 

uncertainties from material factors on the performance of 

RRAM devices. 

MODELS AND UQ METHODS 
The FE model is based on TiN/Hf/HfO2x/TiN RRAM 

proposed by Niraula et al. [2]. The power consumption of 

the model is selected as the quantity of interest (QoI) to 

perform the UQ analysis. The model consists of four 

distinct yet seamlessly integrated modules, corresponding 

to the ON and OFF states and the SET (OFF→ON) and 

RESET (ON→OFF) switching processes. The mechanism 

of switching in this model is primarily driven by 

thermodynamics, which involves controlled manipulation 

of the voltage, pulse amplitude, and polarity, with 

contributions from electrostatic, thermal, and chemical 

free energies. 

A PF model can further explore the impact of 

fundamental material parameters on RRAM performance 

at the mesoscale. The PF model simulates the complete 

switching process of RRAM, consisting of the ON, OFF, 

SET, RESET processes, and includes an additional 

forming process that is not present in the FE model. The 

same UQ analysis is also performed on the PF model. 

Based on the Kim-Kim-Suzuki (KKS) model [3], and the 

electrochemical processes models developed by Shibuta et 

al. [4], a consistent PF model can be assembled in the 

integrated MATLAB-COMSOL Multiphysics modeling 

platform to simulate RRAM switching cycles and derive 

I-V characteristics. A continuous PF order parameter φ 

represents the transition and evolution between the HfO2 

matrix phase (α) and the CF phase (β) in RRAM. By 

solving for the order parameter φ over time and space, the 

kinetics of the evolution of the CF can be obtained.  

UQ methods are crucial for assessing and managing 

uncertainties in models. The Morris One At a Time 

(MOAT) screening method [5] involves the use of 

factorial sampling plans to identify important inputs by 

evaluating the elementary effects of each parameter. 

Sensitivity analysis uses Sobol indices (SI) to quantify 

contributions from individual inputs or their combinations 

[6]. The first-order SI isolates the effect of a single input, 

while the total SI encompasses all contributions. 

Uncertainty propagation estimates the model’s probability 

density function (PDF) from input distributions, using 

kernel density estimation (KDE) to infer the shape of PDF 

[7]. Reliability analysis is used to calculate the probability 

that QoIs meet specific conditions, using Monte Carlo 
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sampling to approximate the integral of the region where 

these conditions are met [8].  

RESULTS AND DISCUSSION 

Predicted I-V curves from the models 

The FE model takes into account the thermodynamic 

processes by minimizing the free energy and simulates the 

complete switching process of RRAM at the macroscopic 

scale. The predicted I-V curve is presented in Fig. 1. The 

O-A segment represents the OFF stage, where the voltage 

increases with a 100 V/s ramp rate. When the voltage 

reaches point A, the device enters the SET process defined 

by the B-C segment, during which a stable CF radius is 

calculated by minimizing the free energy. As the voltage 

drops to 0 and then increases in the reverse direction, the 

device switches to the ON stage, represented by the C-O-D 

segment. Subsequently, the device enters the RESET 

process defined by the E-F segment, during which the CF 

breaks. Finally, the voltage returns to 0, and the device 

reverts to the OFF stage, corresponding to the F-O segment.  

 
Figure 1: An example I-V curve for a complete switching 

cycle of RRAM predicted by the FE model 

Although the FE model mentioned above incorporates a 

thermodynamic analysis, the microstructural morphology of 

the CF and its evolution during the processes of formation 

and rupture should be carefully examined, as the 

microstructural information can be the origin of the 

performance uncertainty of RRAM devices. The PF model 

simulates the same switching cycle as the FE model, with an 

additional consideration on a forming process. Furthermore, 

because of a difference in the focused length scale, the 

parameters in both models cannot be set entirely consistent. 

By solving the Poisson’s equation for the electric potential 

distribution, the diffusion equation of oxygen vacancies, and 

the phase field evolution equation, the morphological 

evolution of the CF is obtained, and the I-V curve of RRAM 

can be derived, as shown in Fig. 2(a). Under a positive 

voltage, oxygen ions migrate into the electrode, leaving 

oxygen vacancies in α phase to form the CF, and connecting 

the two electrodes, as shown in Fig. 2(b). Under reverse 

voltage, oxygen ions migrate back into the α phase and 

combine with oxygen vacancies, causing partial rupture of 

the CF, and switching the device to the RESET process, as 

shown in Fig. 2(c). Reapplying a positive voltage allows the 

CF to grow again and the cycle repeats. 
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Figure 2: RRAM behavior predicted by the PF model: (a) 

an exemplar I–V curve for a complete switching cycle, the 

morphological evolution of the CF phase and the 

composition of the oxygen vacancies in (b) SET and (c) 

RESET process  

UQ on power consumption 

The power consumptions in the SET and RESET 

processes are defined as Pset and Preset, respectively, and 

other key parameters are listed below in Table I. 

TABLE I.  A LIST OF KEY PARAMETERS 

Parameter Physical meaning 

σ Electrical conductivity  

κ Thermal conductivity 

αfil A constant of σCF  

h The thickness of oxide layer 

RL Load resistance 

D Diffusivity  

λ The interface thickness 

Mφ The phase field mobility 

R The nucleation radius 

γ The interfacial energy 

Fig. 3 presents the results of the MOAT screening in the 

FE model. Fig. 3(a) shows the relative importance of 

different parameters affecting Pset, with αfil being the most 

significant due to its highest mean and standard deviation, 

and σCF ranking the second most influential. Similarly, Fig. 

3(b) provides valuable insight into the parameters affecting 

Preset. σCF has the highest mean, indicating a noticeable impact 

on Preset, while αfil, ℎ and RL exhibit higher standard 

deviations, suggesting nonlinear effects or interactions 

among these parameters. The results indicate that Pset can be 

reduced by 32% with the following parameter setting: αfil = 

−0.07, σCF = 105 S/m, ℎ = 9 nm and = 1.5 W/(m·K), and 



the reliability analysis indicates a probability of 0.158 for 

this improvement. Moreover, Preset can be reduced by 38% 

with the following parameter setting: αfil = −0.07, σCF = 

105 S/m, ℎ = 3 nm and RL = 3.5 kΩ, and the reliability 

analysis reveals a probability of 0.186 for this 

improvement. 
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Figure 3: The results of the MOAT screening on (a) Pset 

and (b)Preset in the FE model 

Fig. 4 shows the results of the sensitivity analysis on 

Pset and Preset in the PF model. The left bar of each 

parameter represents the first-order SI and the right bar 

represents the total SI. As shown in Fig. 4(a), Pset is 

primarily controlled by r and Dβ due to the higher total SIs, 

while the low first-order SIs suggest that their impact is 

largely due to interactions with other parameters. Mφ 

exhibits the highest first-order SI but the lowest total SI, 

indicating that its main effect is dominant, with minimal 

interaction effects with other parameters. Similarly, Fig. 

4(b) illustrates the key parameters on Preset. These key 

parameters are largely governed by the interactions, as the 

discrepancy between the total and the first-order SI is 

typically large. The impacts of Mφ, λ, and h are the most 

significant because their total SIs are greater than 0.5.  
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Figure 4: The results of the sensitivity analysis on (a) Pset 

and (b) Preset in the PF model 

Combining the results from the FE and PF models, the 

key parameters identified through UQ are inconsistent. 

This may be attributed to the differences in the physical 

processes concerned in the models: the FE model 

primarily focuses on a thermodynamic process, whereas 

the PF model concentrates on a kinetic process of 

microstructural evolution. In addition, both models 

suggest that electrical conductivity and thickness of the 

HfO2 layer play a significant role. Finally, the results of 

two models complement each other and can provide a 

better understanding of the physical processes that occur 

in RRAM devices. 

UQ on forming voltage 

The forming voltage Vforming is an important 

performance index for RRAM. The KDE curve in Fig. 5 is 

derived from uncertainty propagation and shows the PDF 

of Vforming in the PF model. The KDE curve reveals the 

range of possible forming voltages and exhibits a bimodal 

distribution with two distinct peaks. The main peak is 

approximately located at 0.104 V, and the secondary peak 

appears near 0.078 V, suggesting two separate regions of 

high probability density for the forming voltage.  

 
Figure 5: The KDE curve predicted by the uncertainty 

propagation on Vforming in the PF model 

CONCLUSIONS 
This work employed the UQ method to systematically 

analyze the impact of material uncertainty on the power 

consumption of RRAM in macroscopic FE model and 

mesoscopic PF model. By optimizing key parameters, the 

power consumption in the SET and RESET processes can 

be reduced by 32% and 38%, respectively. In addition, the 

study highlights the significant roles of electrical 

conductivity and the thickness of HfO2 layer in both 

models. Furthermore, the probabilistic relationship 

between inputs and forming voltage is predicted. Future 

studies will investigate and quantify the uncertainty in 

RRAM performance at the atomic and electronic scales. 
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