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ABSTRACT 
For computing-in-memory applications implemented 

by ferroelectric tunnel junction (FTJ), a multi-pulse FTJ 

switching model is required. Here, based on the 

single-pulse nucleation-limited switching (NLS) model, a 

multi-pulse model capable of calculating the change of 

ferroelectric polarization under a series of arbitrary 

waveform pulses at different frequencies is proposed, 

which shows good agreement with literature-reported 

experimental results. In addition, the multi-pulse model 

was adopted in the simulation of an FTJ-based neural 

network, where it was found that the programming scheme 

with increasing pulse amplitude could achieve higher 

recognition accuracy and better FTJ conductance 

fluctuation tolerance than those with identical pulse or 

increasing pulse width. This work provides a useful model 

for further optimization and application of FTJ in 

neuromorphic computing. 

 

INTRODUCTION 
Various applications based on deep learning have 

raised higher and higher demand for computing power and 

data processing capabilities. In the conventional von 

Neumann architecture, the data computing and storage 

units are separated [1], and hence most of the energy 

consumption and delay of the system are spent in memory 

accessing, which severely limits the data processing speed 

and leads to the so-called "memory wall" issue. The 

computing-in-memory (CIM) architecture based on 

emerging memories such as memristor emerges as a 

promising computing paradigm to solve this problem [2], 

[3]. As the fundamental computing unit, memristor with 

analog resistive switching characteristics plays a vital role 

in the performance of CIM systems [4]. Thanks to the 

excellent characteristics of ferroelectric materials, 

including fast polarization switching speed and stable 

polarization state, ferroelectric memory has the potential 

advantages of high speed, low power consumption and 

non-volatility [5]. In particular, as one type of ferroelectric 

memory devices, ferroelectric tunnel junction (FTJ) has 

attracted wide attention because of its ability to realize 

continuous conductance modulation [6]. 

Based on the analog resistive switching 

characteristics of FTJ, an FTJ crossbar array can realize 

the vector-matrix multiplication operation in one step by 

taking the advantage of CIM, which is highly desired for 

accelerating deep learning algorithms. For the 

implementation of neural network training and inference, 

the linearity, symmetry, number of conductance levels, 

fluctuation and other resistive switching characteristics of 

the FTJ devices can directly affect the final recognition 

accuracy [7]. For this purpose, establishing a multi-pulse 

switching model of FTJ, and studying the influence of its 

non-ideal characteristics on the array performance are 

critical for the CIM application of FTJ devices. 

The key issue of the FTJ multi-pulse switching model 

is the polarization reversal of the ferroelectric film. So far, 

there are two mainstream models which describe the 

polarization reversal process: Preisach model and 

nucleation-limited switching (NLS) model [8], [9]. 

However, neither Preisach model nor NLS model could 

accurately describe the change of ferroelectric polarization 

under a series of arbitrary pulses.  

In this article, a method is proposed to expand the 

NLS model to a new multi-pulse model by calculating the 

cumulative effect of previous pulses. This new multi-pulse 

model could accurately calculate the polarization changes 

of ferroelectric materials under arbitrary voltage pulses by 

dividing an arbitrary voltage waveform into a series of 

rectangular pulses based on the idea of differentiation. The 

multi-pulse model could also predict the 

frequency-dependent characteristics of ferroelectric 

materials very well. Furthermore, the FTJ multi-pulse 

switching model was applied in artificial neural network 

simulation, and the influence of different programming 

schemes on the classification accuracy was studied. 

 

DEVICE MODELING 
Here it is assumed that n pulses with the same 

amplitude 𝑉 and a summation of total pulse width 𝑇𝑛 are 

equivalent to one single pulse with pulse amplitude 𝑉 and 

pulse width  𝑇𝑛 . According to this assumption, the 

switched fraction of the ferroelectric film under n voltage 

pulses with the same amplitude 𝑉 is given by: 

𝑝(𝑛) = 𝑝𝑁𝐿𝑆(𝑉, 𝑇𝑛) = 𝑝𝑁𝐿𝑆 (𝑉, ∑ 𝑡𝑖

𝑛

1
) #(1)  

where 𝑝𝑁𝐿𝑆  denotes the switched fraction of the 

ferroelectric film calculated by NLS model, 𝑡𝑖 is the pulse 

width of the i
th

 pulse and 𝑇𝑛 = ∑ 𝑡𝑖
𝑛
1 . 

Similar to Equation (1), the switched fraction of the 
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ferroelectric film under n+1 voltage pulses namely 

𝑝(𝑛 + 1) can be derived as follows: 

𝑝(𝑛 + 1) = 𝑝𝑁𝐿𝑆(𝑉, 𝑇𝑛+1) = 𝑝𝑁𝐿𝑆(𝑉, 𝑇𝑛 + 𝑡𝑛+1)#(2)  

where 𝑇𝑛+1 denotes the summation of total pulse width of 

n+1 pulses, 𝑡𝑛+1 is the pulse width of the (n+1)
th

 pulse and 

𝑇𝑛+1 = ∑ 𝑡𝑖
𝑛+1
1 = 𝑇𝑛 + 𝑡𝑛+1. 

Note that this equation of calculating the 

accumulative effect is only suitable for pulses with same 

amplitude. 

For pulses with different amplitudes, suppose that the 

value of 𝑝(𝑛) has been obtained. The amplitude of the 

(n+1)
th

 pulse is 𝑉∗ and the pulse width is 𝑡𝑛+1
∗ . In order to 

calculate 𝑝(𝑛 + 1), the accumulative effect of previous 

pulses namely 𝑝(𝑛) is assumed to be equivalently induced 

by one single pulse with constant amplitude 𝑉∗ and width 

𝑇𝑛
∗, thus converting the different amplitudes condition to 

same amplitude condition. 𝑇𝑛
∗ can be derived by solving 

Equation (1): 

𝑇𝑛
∗ = 𝑠𝑜𝑙𝑣𝑒[𝑝(𝑛) = 𝑝𝑁𝐿𝑆(𝑉∗, 𝑇𝑛

∗)]#(3)  

Then by substituting 𝑇𝑛
∗ into Equation (2), 𝑝(𝑛 + 1) 

can be calculated. 

𝑝(𝑛 + 1) = 𝑝𝑁𝐿𝑆(𝑉∗, 𝑇𝑛
∗ + 𝑡𝑛+1

∗ )#(4)  

In this way, once 𝑝(1) is known, the evolution of 

ferroelectric polarization under the pulse sequence can be 

calculated. Here 𝑝(1) is the fraction of switched volume 

under the first pulse, which can be directly calculated by 

NLS model: 

𝑝(1) = 𝑝𝑁𝐿𝑆(𝑉1, 𝑡1)#(5)  

The overall calculation process is summarized as 

follows: 

𝑝(1) = 𝑝𝑁𝐿𝑆(𝑉1, 𝑡1) 

           ⋮ 

𝑝(𝑛) = 𝑝𝑁𝐿𝑆(𝑉𝑛 , 𝑇𝑛−1
∗ + 𝑡𝑛) 

𝑇𝑛
∗ = 𝑠𝑜𝑙𝑣𝑒[𝑝(𝑛) = 𝑝𝑁𝐿𝑆(𝑉𝑛+1, 𝑇𝑛

∗)] 

𝑝(𝑛 + 1) = 𝑝𝑁𝐿𝑆(𝑉𝑛+1, 𝑇𝑛
∗ + 𝑡𝑛+1) 

           ⋮ 

where 𝑉𝑖 is the amplitude of the i
th

 pulse. 

Figure 1(a) shows the fitting results of experimental 

data (Cu/P(VDF-TrFE)/Cu ferroelectric capacitor) with 

the NLS model under different electric field strengths [10]. 

By dividing an arbitrary voltage pulse into short 

rectangular pulses, each with an approximately constant 

amplitude, the multi-pulse switching model described 

above could be utilized, and the simulation results of the 

polarization change with the external electric field at 

different frequencies are shown in Figure 1(b). The good 

fitting between the multi-pulse switching model and the 

experimental data indicates that the multi-pulse switching 

model can accurately describe the FTJ switching process. 

 
Figure 1: Points denote experimental data and lines 

denote simulation results. (a) Fitting results of the 

experimental data with NLS model under different electric 

field strengths. (b) Polarization vs. electric field at 

different frequencies calculated by the multi-pulse 

switching model. The experimental data are extracted 

from Reference [10]. 

 

SIMULATION RESULTS 
Programming Scheme Simulation Results 

Simulations of three different FTJ programming 

schemes were implemented, using the multi-pulse 

switching model. The parameters of set and reset pulses 

and the calculation results of FTJ current density are 

shown in Figure 2. It can be seen that the programming 

scheme with increasing pulse amplitude yields the best 

linearity and symmetry. 

 
Figure 2: Polarization and current density vs. ordinal 

number of pulses with different programming schemes: (a) 

identical pulses; (b) increasing pulse width; (c) increasing 

pulse amplitude. Pulse amplitudes are reduced in reset 



process to improve the linearity and symmetry of FTJ. 

 

Neural Network Simulation Results 

Utilizing the analog switching characteristics of FTJ 

under different programming schemes in Figure 2, neural 

network simulations were performed for handwriting 

digits recognition on the widely used Mixed National 

Institute of Standards and Technology (MNIST) database. 

Figure 3(a) illustrates the structure of the simulated 

multi-layer perceptron of 784×200×10. Differential pairs 

consisting of two FTJ cells were adopted to realize both 

positive and negative synaptic weights, and the hidden 

layer was binarized to simplify the hardware 

implementation [11]. Device fluctuations were introduced 

in the training process, by renewing the conductance with 

a stochastic increment of ∆G × N(1, σ) at each time when 

the weight was updated. The simulation results of 

recognition accuracy with different programming schemes 

are shown in Figure 3(b). It can be seen that compared 

with the other two programming schemes, the 

programming scheme of increasing amplitude pulses 

gives the highest recognition accuracy of about 90% and 

the highest tolerance to conductance fluctuation. 

 
Figure 3: (a) Structure of neural network. (b) Simulation 

results of recognition accuracy using different pulse 

programming schemes. σ is the standard deviation, which 

represents the degree of dispersion of the conductance 

value drift caused by fluctuation. 

 

CONCLUSION 
To sum up, a comprehensive multi-pulse switching 

model for FTJ is established, extending the single-pulse 

NLS model to calculate the change of ferroelectric 

polarization under a series of arbitrary waveform pulses. 

The simulation results of the model were in good 

agreement with the experimental data at different 

frequencies. The multi-pulse switching model was further 

applied to simulations of FTJ-based artificial neural 

network for MNIST dataset recognition. It was found that 

using pulses with increasing amplitude achieved the best 

recognition accuracy up to 90% and the highest tolerance 

to conductance fluctuation compared with the other two 

schemes. The developed multi-pulse switching model of 

FTJ provides a useful guidance for device optimization 

and also neural network application in the future. 
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