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ABSTRACT 
Recent years, spike-based neuron computing on 

scalable and event-based neuromorphic hardware has 

demonstrated impressive energy efficiency. In this paper, 

we propose a novel spiking scheme for 1-bit and 8-bit 

convolutional neural networks and a systematic mapping 

algorithm for their deployments on a digital neuromorphic 

ASIC, with which we can automatically partition input and 

output feature maps for a 1152*1024 crossbar computing 

element for a excellent resource efficiency. Experimental 

results on MNIST dataset show that we can achieve about 

98.5% and 99.4% test accuracy for these two kinds of bit-

width networks respectively, while the chip can achieve 

nearly 863 and 174 images/sec real-time inference speed 

at 0.9 V, 252 MHz. 

 

INTRODUCTION 

Convolutional neural networks (CNNs) have been 

widely used in computer vision such as object recognition 

and detection task. However, conventional applications on 

CPU or GPU adopt high precision (32/64 bits) fixed point 

or floating point computation paradigm, which usually 

require powerful processing ability with massive memory 

and energy consumption budget. As a result, this must be 

a big challenge for deployment of these deep learning 

models on mobile and embedded hardware with limited 

resource and memory. In the meantime, spiking neural 

networks (SNNs) designed as a brain-like system usually 

use a discretized spike-based representation for signal 

communication and computing without any multiplication. 

This kind of neural network can be mapped to specific 

neuromorphic chip such as IBM’ TrueNorth [1] and 

achieve a quite high energy efficiency using low-bit spike-

based computation. For example, a single TrueNorth chip 

comprised of 1 million neurons and 256 million synapses, 

can run image classification task for just 70 mW at real-

time operation. Intel's Loihi [2] also supports a parallel 

synapse array, designed in units of spiking neurons, and 

could achieve several orders of magnitude of energy 

efficiency compared with common platforms like CPUs or 

GPUs. However, most of the contemporary neuromorphic 

hardwares are designed with 2D mesh crossbar structure 

and usually has a typical block-wise constraint for neuron 

connectivities and finite combination of synapse weights. 

According to address protocol of router, spiking neurons 

in a TrueNorth synaptic core can only communicate with 

neurons in another core with one axon.  Therefore, if we 

want to achieve multiple fan-in and fan-out for 

overlapping feature map reuse and high-precision weights, 

numerous copy neurons are needed. Besides, because of 

block-wise 256*256 synapse array, TrueNorth chip can’t 

even support a fully connected neural network with three 

layers (784-500-10) for MNIST dataset. For convolutional 

neural networks, they have to use group convolution to 

compress networks, which may cause a degraded accuracy 

and additional complexity of mapping algorithm. For 

facility of network deployment, they develop a specific 

hardware description functions called corelets [3] which 

can automatically compile the learned network parameters 

to program TrueNorth chip. 

In this paper, we firstly describe a reconfigurable 

neuromorphic chip architecture alleviated above design 

drawback and then present a novel spiking scheme for 1-

bit and 8-bit convolutional neural networks. Finally, we 

propose a systematic mapping algorithm for deployment 

on this chip. Experimental results using LeNet [4] on 

MNIST dataset show that we can achieve about 98.5% and 

99.4% test accuracy for these two networks with kinds of 

bit-width respectively, while the chip can achieve nearly 

863 and 174 images/sec real-time inference speed at 0.9 V, 

252 MHz. 

 

METHOD 
Chip architecture 

In this work, we choose a neuromorphic chip with 

reconfigurable bit width as our deployment platform. This 

chip consists of 1152 input axons, 1024 processing spiking 

neurons and a 1152*1024 neuro-synaptic crossbar (seeing 

Figure 1). Each neuron has only one programmable weight 

parameter for strength of synapse connectivity and 1152 

on/off synapse switches. With the combination of multiple 

axons (1,2,4,8), we can achieve a multi-bit (1,2,4,8) input 

spike packet. In the similar way, we can achieve a multi-

bit (1,2,4,8) weight representation with the combination of 

multiple (1,2,4,8) neurons. Both of them can be configured 

in advance for different neural network with different bit 

widths. Moreover, this crossbar can support a temporal 

axon reuse at most 64 (1,2,4,8,16,32,64) times during a 

complete computing time step, to achieve a larger feature 

map input at the cost of decreasing the number of output 

neurons. For example, we can support a mapping of a 

largest convolutional kernel of 3*3*2048, and output only  
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Figure 1. Chip structure 

one feature point. Furtherly, we can further reuse this chip 

to compute for a complete convolutional layer.  

Spiking scheme 

 In this work, we choose a classical convolutional 

neural network called LeNet (Fig. 3) with two kinds of bit 

width (1 bit and 8 bit) for demonstrate the mapping process. 

As mentioned above, our chip actually supports more 

flexible bit-width choices. For 1-bit LeNet, we adopted a 

simple binary quantization method in [5] and modified 

output activation as {0,1} rather than {-1,+1} to satisfy 

spike signal representation [6], seeing in (1). 

𝑆𝑝𝑖𝑘𝑖𝑛𝑔(1 𝑏𝑖𝑡) = {
 0, ∑ 𝑥𝑖(𝑡) ∗ 𝑤𝑖𝑖 + 𝐿 ≤ 𝜃     

 1, ∑ 𝑥𝑖(𝑡) ∗ 𝑤𝑖𝑖 + 𝐿 > 𝜃     
               (1) 

where 𝑥𝑖(𝑡) is the spiking input (either 0 or 1) at time t and 

𝑤𝑖  is corresponding weight, leakage L and threshold θ was 

computed from batch normalization layer, one spike will 

be determined to emit or not, according to the behavior of 

leaky integrate-and-fire (LIF) spiking neuron model. 

For 8-bit LeNet, we firstly trained a full-precision 

counterpart with ReLU activation by back-propagation 

algorithm, then we linearly quantize weight parameters to 

signed 8-bit integer and quantize activations to unsigned 

8-bit integer to match multi-bit nonnegative spike signal 

representation. For its spiking scheme, we configure an 8-

bit truncation range to keep each neuron emit at most 8 

spikes according to truncated 8 bits as in Figure 2.  

 

Figure 2. Spiking scheme using 8-bit truncation 

Mapping algorithm 

For the sake of description, we adopt a series of 

definition in Table 1 for each configuration parameter. For 

a standard 2-D crossbar unit with finite inputs and outputs 

(1152*1024 for our chip), we firstly need to partition input 

 
Figure 3. LeNet architecture 

feature map into a number of m*n patches to ensure that 

each patch is not exceeding the number of input axons. 

Certainly, we can extend for a larger input patch with 

larger width or height by reusing input axon for f times. 

Meanwhile, the size of calculated output patch should be 

also less than the number of output of axons. Hence there 

is a tradeoff between the size of input patch and output 

patch, larger input patch using axon extension may cause 

larger output patch, which might not match the reduced 

output neurons. Finally, we aim to map different patches 

of a convolutional layer or pooling layer on such a synaptic 

crossbar unit during multiple complete computing time 

steps with chip-level resource reuse, while our chip can 

show an excellent resource utilization efficiency in every 

complete computing time step.  

For a systematic and modular mapping mechanism 

and relieving burden of spike signal multicast, we propose 

three basic criteria on mapping algorithm summarized as 

below: 

1) Each input patch should be symmetrical and 

involve all channels of input feature maps, and satisfy a 

maximum axon occupation and input load balancing. 

2) Each output patch should be also symmetrical and 

involve all channels of output feature maps, and satisfy a 

maximum neuron occupation and output load balancing. 

3) Each of activations from input feature maps should 

contribute to a neuron output with a complete computation 

of convolution or pooling operation.  

 For a convolutional or pooling layer, we can conclude 

following constraints seeing (2) (3).  

    𝑤𝑙 ∗ ℎ𝑙 ∗ 𝑑𝑙 ≤
1152 ∗ 𝑓

𝑘
,    𝑤𝑙+1 ∗ ℎ𝑙+1 ∗ 𝑑𝑙+1 ≤

1024

𝑓 ∗ 𝑘
     (2) 

          𝑤𝑙+1   =
𝑤𝑙 − 𝑐𝑙+1

𝑠𝑙+1
+ 1,       ℎ𝑙+1 =

ℎ𝑙 − 𝑐𝑙+1

𝑠𝑙+1
+ 1          (3) 

If we keep each patch equal, horizontal and vertical 

patches can be calculated as (4) and (5).  

                      𝑊𝑙 = 𝑤𝑙 ∗ 𝑚𝑙 − (𝑚𝑙 − 1) ∗ (𝑐𝑙+1 − 𝑠𝑙+1)            (4) 
                         𝐻𝑙 = ℎ𝑙 ∗ 𝑛𝑙 − (𝑛𝑙 − 1) ∗ (𝑐𝑙+1 − 𝑠𝑙+1)            (5) 

Therefore, the total number of patches or complete 

time steps will be m*n. By the way, we use a convolution 

with stride 2 to replace a pooling, which was proved to be 

feasible. Refer to above inequality constraints, we can 

obtain a proper w, h and  f  for each layer using a simple 

grid search algorithm, and furtherly figure out hardware 

resource overhead and computing time of each patch. 



Table 1. Parameter definitions 
 

w, h 
Patch width and 

height 
 

m Horizontal patchs 

W, 

H 

Feature width and 

height 
n Vertical patch 

d Feature depth c 
Convolution/pooling 

width/height 

f Axon extension s 
Stride for convolution 

or pooling 

l l-th layer patch Partial feature map 

k 
Quantization bit 

width 
overlap 

Overlapping between 
patches 

 

EXPERIMENTAL RESULTS 
Network configuration 

For 1-bit convolutional neural networks, we can 

employ only one axon for one input activation point and 

two neurons with respective weights of {-1,+1} for one 

output activation. It should be noted that feature activation 

point is represented as a spike signal in our chip. For 8-bit 

convolutional neural networks, we use eight axons for one 

input activation point and eight weighted neurons for one 

output activation point, each axon or neuron represent each 

bit in 8-bit spike-based feature activation or kernel weight. 

By searching optimized parameters include w, h and f, we 

summarize final configuration information for both two 

kinds of spiking LeNet as in Table 2 and Table 3: 

Table 2. 1-bit LeNet configuration 
Feature map Patch size f Time steps 

28*28*1 12*12*1 1 9 

24*24*8 12*12*8 1 4 

12*12*8 8*8*8 1 4 

8*8*32 4*8*32 1 2 

Table 3. 8-bit LeNet configuration 
Feature map Patch size f Time steps 

28*28*1 8*8*1 1 36 

24*24*8 4*8*8 2 18 

12*12*8 5*6*8 2 32 

8*8*32 2*4*32 2 8 

 

Accuracy and speed 

We adopt an original STE training and quantization 

algorithm [7] for a 1-bit LeNet, and a simple post-training 

quantization algorithm for the 8-bit one. Their accuracy 

performances on MNIST test set can be found in Table 4. 

According to above mapping workflow, we can achieve a 

final 98.5% and 99.4% test accuracy for these two kinds 

of bit-width networks respectively, while our chip can 

achieve nearly 863 images/sec and 174 images/sec real-

time classification speed at 0.9 V, 252 MHz. 

Table 4. Real-time classification accuracy and speed 

for 1/8-bit LeNet 
 accuracy speed 

1-bit LeNet 98.5% 863 images/sec 

8-bit LeNet 99.4% 174 images/sec 

 

CONCLUSION 
In this paper, we present a reconfigurable neuro-

morphic chip with a delicate architecture which alleviated 

block-wise connection drawbacks and propose a novel 

spiking scheme for 1-bit and 8-bit convolutional neural 

networks. More importantly, we develop a systematic 

mapping algorithm to automatically partition feature patch 

on our chip. Experimental results show that the spike-

based 1/8-bit LeNet on MNIST dataset achieved about 

98.5% and 99.4% test accuracy respectively, while the 

chip can achieve nearly 963 and 174 images/sec real-time 

inference speed at 0.9 V, 252 MHz. 
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