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ABSTRACT 
Convolutional Neural Network is a promising 

technology in machine learning. Due to its vast computing 
and data requirements, it needs to be run with a specific 
accelerator to achieve reasonable energy efficiency. 
Improving the performance of accelerators has become the 
research hotspot. A mixed-precision structure can be used 
to improve hardware utilization, thus reducing area and 
power. However, the mixed-precision flow control is so 
complicated that it costs too much hardware resources. In 
this paper, a CNN accelerator with embedded RISC-V 
controllers is introduced to achieve flexible control at a 
very low cost. The ASIC synthesized results show that the 
proposed design area with two embedded cores is 5% less 
than the basic design. 

 
INTRODUCTION 

Convolutional neural network (CNN) has been 
increasingly deployed in various deep learning 
applications, from computer vision, to speech recognition 
and natural language processing [1-3]. But devices that 
run CNN are commonly constrained by lower 
computation and storage resources and demand more 
efficient hardware implementations to ensure reduced 
storage size, faster inference and higher energy efficiency. 
Although GPU may easily provide significant 
performance, its power consumption limits its broader 
applications. Instead, many researchers consider FPGA 
and ASIC as more promising alternatives to implement 
low power or energy-efficient CNN accelerators. 
However, as CNN size and complexity continues growing, 
there has been substantial progress in designing light 
weight CNN architecture and better speed-accuracy 
tradeoff through innovations in hardware 
implementations.  

Among various efforts, quantization for multipliers, 
which is the most frequent operation in a CNN, has 
become an active research topic [4-7]. An operand with 
smaller bit-width, i.e., lower precision, in a CNN, may 
help reduce energy consumption not only in computation 
but also transmission. Thus, it is a very appealing option 
for hardware architects and designers to design the 
processing element (PE), i.e.¸ the basic functional unit of a 
CNN, with the desired and optimized precision. Reference 
[4] proposes to use two 8-bit multipliers in a PE to switch 
between 8- and 16-bit precisions. ENVISION in [5] 
presents a booth multiplier based dynamic voltage 
accuracy frequency scaling technology that can be 

configured to 4-, 8- or 16-bits. Furthermore, UNPU [6] 
uses serial multipliers to implement lookup table-based PE 
to enable precisions from 1 to 16 bits. In short, at the cost 
of additional area for PE, control logics and storage, the 
reconfigurability can provide different precisions to 
different neural networks or different layers in one neural 
network, thereby improving overall energy saving. 
However, the precision control of all the prior work is at 
most at the granularity of layer-wise. In other words, 
within the same layer, all the operations use the same 
precision and bit-width.   

[7] proposes a general-purpose CNN accelerator 
architecture with fine granular mixed-precision support to 
address the challenges mentioned above. It uses two 
independent PE arrays to handle high-precision and 
low-precision calculations, respectively. But its flow 
control is quite complicated and consumes a lot of 
hardware. It does not have a good effect of reducing the 
area but limits the flexibility. In this paper, we propose a 
general-purpose CNN accelerator architecture with a dual 
RISC-V core controller to improve control flexibility and 
hardware utilization. The contributions of this work can be 
summarized as below:   
 Universal accelerator architecture: The CNN 
computations are separated into two groups, full and low 
precision. We use two-level cores to fine-grained control 
their flow. The complete core controls the whole 
accelerator, and the simplified one controls the logic- 
complicated part in the accelerator. Such an architecture is 
applicable to different CNNs to support simultaneous 
computations using multi-blocks. 
 A reconfigurable control logic using 
minimalist hardware: A unique logic is designed to 
control the queued operations for the full precision 
processing element (FPPE). Its hardware implementation 
and operation flow are straightforward but with a high 
degree of flexibility 
BACKGROUND 

RISC-V is a modular instruction set architecture (ISA) 
[8]. For achieving a good hardware utilization, designer 
can select instruction subsets in RISC-V according to their 
requirement. A small RISC-V implementation which 
called “PicoRV32” needs only 7000 LUTs on FPGA [9]. 
The PicoRV32 can be used as a microcontroller in a 
block-designed system. 

Since the advent of Tensor Processing Unit (TPU), it 
has been a popular research topic to design a universal 
accelerator architecture that can support different neural 
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networks for different applications. A commonly-used 
accelerator consists of a PE array, a global buffer (GLB) 
and additional control logics [4-7]. The PE is the basic 
computing unit in the accelerator, which contains memory 
blocks and multiply-and-accumulate (MAC) units. The 
role of GLB is to temporarily store data for the neural 
network, such as input feature maps (IFmaps), partial 
sums (Psums), weights and bias. 

At the beginning of the accelerator operation, all the 
IFmaps and weights are stored in DRAM. According to 
the convolution process, data is transferred from DRAM 
to GLB in order. Then, the data in GLB is assigned to a PE 
through the data bus. Finally, the calculated results of a PE 
are transferred back to GLB through the data bus. Such a 
process is repeated until all the operations of a neural 
network layer is completed. Apparently, most energy 
consumption comes from the repeated data movement and 
computations. Thus, a higher bit-width of precision 
inevitably leads to more energy consumption in both 
transmission and computation. 

 
Fig. 1.  Architecture of the proposed CNN accelerator 
with dual RISC-V controller. 
 
PROPOSED ARCHITECTURE 
Architecture Overview 

The proposed architecture is illustrated in Fig. 1. Its 
main components are described below: 

• PE array’s structure and data flow are similar to that 
in [4]. The difference is the MACs and storage here are 
8-bit precision. This PE array only runs the 8-bit weights 
calculations. 

• The 16-bit weights calculations are done by FPPEs. 
The FPPE contains a 16-bit MAC, 16-bit storage, IFmap 
receiver and some logic for decode the weights index. 

• The Adders between PE array sum the output of PEs 
and FPPEs, then send back the result to GLB. 

• GLB is a group of SRAM that temporarily stores 
intermediate data of calculations. 

• PicoRV32[IMC] is a relatively complete controller. 
It has I, M, C instruction subsets, and can runs the driver 
code for the entire accelerator. With this embedded 
processor, the workload of the external processor can be 
greatly reduced. 

• Simplified PicoRV32[I] is a minimized PicoRV 
which only has I instruction subset. And its interfaces, 
memory and fabrics are also removed or compressed to 
reduce its area. It only does the configuration and control 
for FPPEs. 

In this work, the two PicoRV controllers are designed 
to handle the whole accelerator and the FPPEs 
respectively to achieve finer granular operation. However, 
we can always employ similar techniques in [4-7] to 
support more diversified operation in each module, as the 
proposed techniques are general.  

 
Fig. 2.  Architecture of the Simplified PicoRV and FPPE 
 
Simplified PicoRV32 processor 

The simplified PicoRV32 controller is shown in the 
right part of Fig.2. The instruction tightly coupled memory 
(ITCM) is set to as small as 1KB because it only runs 
RAM load/save and interrupt requirement (IRQ) response. 
The data tightly coupled memory (DTCM) only stores a 
few data, so it can also be set to less than 1KB.  

Its workflow is described in Fig.3: When a calculation 
pass starts, the pre-compiled FP weights order list and 
encode parameters of this pass are sent to DTCM by 
PicoRV. Then the simplified PicoRV configures the 
Encoder with the parameters and puts the first order 
number into the Encoder. The Encoder is a group of 
MACs, and it combines the order number and parameters 
to obtain the Index of FP weight data. When an FP weight 
occurs, the input FIFO’s valid signal triggers the IRQ and 
reads the encoded index. Then the simplified PicoRV put a 
new number into Encoder. This process loops until the 
pass over. 

In the previous design, data flow and de/encoding are 
controlled by fixed logic. In order to achieve functional 
coverage, the design needs to be very complex and 
difficult to configure. In this paper, the task of this 
simplified PicoRV is fairly simple, but it can be changed 
at any time. You just need to put the compiled code into its 
ITCM, or even compile its task code on the spot in another 
complete PicoRV. Therefore, this design achieves high 
flexibility with minimal hardware complexity. 
FPPE  

The structure of FPPE is shown in the left part of 
Fig.2.   Compares with [7], we removed lots of parameters 



storage and encoding logic. Because the encoding is done 
by the simplified PicoRV. The FP data and encoded index 
are sent to FPPE and stored in SRAM. According to the 
index, the module fetches the corresponding IFmap in the 
IF data flow. Then the IFmap data is then multiplied by the 
FP weight data, the product of them becomes the partial 
sum and save into Psums SRAM. After the MACs 
operation in PE array is finished, the Psums SRAM data is 
added to PE array result and sent back to GLB. Psums 
data’s relative address is also extracted from the index. 

 
Fig. 3.  Code execution flow of Simplified PicoRV. 
EXPERIMENTAL RESULTS 

We implemented our design using Xilinx ZCU102 
FPGA and UMC 40nm ASIC synthesis, respectively. The 
method in [4] and [7] are also implemented for 
comparison. In terms of running the neural network, the 
execution speed of FPPE is related to the proportion of FP 
data in the weight, and the ratio of FP is associated with 
the quantification scheme. If we quantify the FP ratio to 
below 10%, FPPE can quickly finish the task and not 
become the bottleneck of speed. In the PE array, we use 
8-bit MACs, which can undoubtedly run at a higher 
frequency than the 16-bit MAC. However, it cannot 
perform the speed advantage well on FPGA, and ASIC is 
difficult to complete such large-scale simulation, so we 
cannot objectively compare the three designs' network 
speed here. 

In terms of hardware scale, the advantages of our 
design can be seen intuitively. Table 1 shows the resource 
comparison between [4, 7] and this work. The simplified 
PicoRV only use 4100 LUTs in FPGA and 23k 
um2(include TCMs) in ASIC. Replacing 16-bit PE with 
8-bit PE resulted in an area reduction of nearly 30%. 
However, because of the complex control logic, FPPE in 
[7] has a large area. This work adds a simplified PicoRV to 
control the FPPE flow so that reduce the area of FPPE is 
greatly reduced.   
CONCLUSION 

This work proposed a CNN accelerator architecture 
with mixed precision processing elements. Two RISC-V 
core controllers are used to control the flow, one of which 
is a simplified core with an area of only 14k μm2. Due to 
the simplified controller, the accelerator area is reduced by 

17% and 5%, respectively, compared with that in [4] and 
[7].  

TABLE 1 HARDWARE AMOUNT COMPARISON 
(unit: FPGA-LUTs in logic, Byte in block RAM, ASIC-μm2) 

component Ref.[4] Ref.[7] This work 
FPGA ASIC FPGA ASIC FPGA ASIC 

PEs(x168) 265k 2452k 152k 1764k 152k 1764k 
--MAC 280 1.6k 128 0.9k 128 0.9k 
--storage 608B 10.8k 384B 7.8k 384B 7.8k 
--logic 1313 2.2k 777 1.8k 777 1.8k 
FPPEs(x14) - - 37k 377k 25k 200k 
--MAC - - 280 1.6k 280 1.6k 
--storage - - 1.2kB 22k 0.6kB 11k 
--logic - - 2.4k 3.3k 1.5k 1.7k 
PicoRV - - - - 7k 68k 
--logic - - - - 7k 18k 
--TCMs - - - - 4kB 50k 
SimpPicoRV - - - - 4k 23k 
--logic - - - - 4k 11k 
--TCMs - - - - 2kB 12k 
Total 265k 2452k 189k 2141k 188k 2055k 
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