
A CNN ACCELERATOR WITH EMBEDDED RISC-V CONTROLLERS
Li Zhang*, Xian Zhou and Chuliang Guo

College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310000,
China

*Corresponding Author’s Email: andyzhang926@zju.edu.cn

ABSTRACT
Convolutional Neural Network is a promising

technology in machine learning. Due to its vast computing
and data requirements, it needs to be run with a specific
accelerator to achieve reasonable energy efficiency.
Improving the performance of accelerators has become the
research hotspot. A mixed-precision structure can be used
to improve hardware utilization, thus reducing area and
power. However, the mixed-precision flow control is so
complicated that it costs too much hardware resources. In
this paper, a CNN accelerator with embedded RISC-V
controllers is introduced to achieve flexible control at a
very low cost. The ASIC synthesized results show that the
proposed design area with two embedded cores is 5% less
than the basic design.

INTRODUCTION

Convolutional neural network (CNN) has been
increasingly deployed in various deep learning
applications, from computer vision, to speech recognition
and natural language processing [1-3]. But devices that
run CNN are commonly constrained by lower
computation and storage resources and demand more
efficient hardware implementations to ensure reduced
storage size, faster inference and higher energy efficiency.
Although GPU may easily provide significant
performance, its power consumption limits its broader
applications. Instead, many researchers consider FPGA
and ASIC as more promising alternatives to implement
low power or energy-efficient CNN accelerators.
However, as CNN size and complexity continues growing,
there has been substantial progress in designing light
weight CNN architecture and better speed-accuracy
tradeoff through innovations in hardware
implementations.

Among various efforts, quantization for multipliers,
which is the most frequent operation in a CNN, has
become an active research topic [4-7]. An operand with
smaller bit-width, i.e., lower precision, in a CNN, may
help reduce energy consumption not only in computation
but also transmission. Thus, it is a very appealing option
for hardware architects and designers to design the
processing element (PE), i.e.¸ the basic functional unit of a
CNN, with the desired and optimized precision. Reference
[4] proposes to use two 8-bit multipliers in a PE to switch
between 8- and 16-bit precisions. ENVISION in [5]
presents a booth multiplier based dynamic voltage
accuracy frequency scaling technology that can be

configured to 4-, 8- or 16-bits. Furthermore, UNPU [6]
uses serial multipliers to implement lookup table-based PE
to enable precisions from 1 to 16 bits. In short, at the cost
of additional area for PE, control logics and storage, the
reconfigurability can provide different precisions to
different neural networks or different layers in one neural
network, thereby improving overall energy saving.
However, the precision control of all the prior work is at
most at the granularity of layer-wise. In other words,
within the same layer, all the operations use the same
precision and bit-width.

[7] proposes a general-purpose CNN accelerator
architecture with fine granular mixed-precision support to
address the challenges mentioned above. It uses two
independent PE arrays to handle high-precision and
low-precision calculations, respectively. But its flow
control is quite complicated and consumes a lot of
hardware. It does not have a good effect of reducing the
area but limits the flexibility. In this paper, we propose a
general-purpose CNN accelerator architecture with a dual
RISC-V core controller to improve control flexibility and
hardware utilization. The contributions of this work can be
summarized as below:
 Universal accelerator architecture: The CNN
computations are separated into two groups, full and low
precision. We use two-level cores to fine-grained control
their flow. The complete core controls the whole
accelerator, and the simplified one controls the logic-
complicated part in the accelerator. Such an architecture is
applicable to different CNNs to support simultaneous
computations using multi-blocks.
 A reconfigurable control logic using
minimalist hardware: A unique logic is designed to
control the queued operations for the full precision
processing element (FPPE). Its hardware implementation
and operation flow are straightforward but with a high
degree of flexibility
BACKGROUND

RISC-V is a modular instruction set architecture (ISA)
[8]. For achieving a good hardware utilization, designer
can select instruction subsets in RISC-V according to their
requirement. A small RISC-V implementation which
called “PicoRV32” needs only 7000 LUTs on FPGA [9].
The PicoRV32 can be used as a microcontroller in a
block-designed system.

Since the advent of Tensor Processing Unit (TPU), it
has been a popular research topic to design a universal
accelerator architecture that can support different neural

mailto:andyzhang926@zju.edu.cn

networks for different applications. A commonly-used
accelerator consists of a PE array, a global buffer (GLB)
and additional control logics [4-7]. The PE is the basic
computing unit in the accelerator, which contains memory
blocks and multiply-and-accumulate (MAC) units. The
role of GLB is to temporarily store data for the neural
network, such as input feature maps (IFmaps), partial
sums (Psums), weights and bias.

At the beginning of the accelerator operation, all the
IFmaps and weights are stored in DRAM. According to
the convolution process, data is transferred from DRAM
to GLB in order. Then, the data in GLB is assigned to a PE
through the data bus. Finally, the calculated results of a PE
are transferred back to GLB through the data bus. Such a
process is repeated until all the operations of a neural
network layer is completed. Apparently, most energy
consumption comes from the repeated data movement and
computations. Thus, a higher bit-width of precision
inevitably leads to more energy consumption in both
transmission and computation.

Fig. 1. Architecture of the proposed CNN accelerator
with dual RISC-V controller.

PROPOSED ARCHITECTURE
Architecture Overview

The proposed architecture is illustrated in Fig. 1. Its
main components are described below:

• PE array’s structure and data flow are similar to that
in [4]. The difference is the MACs and storage here are
8-bit precision. This PE array only runs the 8-bit weights
calculations.

• The 16-bit weights calculations are done by FPPEs.
The FPPE contains a 16-bit MAC, 16-bit storage, IFmap
receiver and some logic for decode the weights index.

• The Adders between PE array sum the output of PEs
and FPPEs, then send back the result to GLB.

• GLB is a group of SRAM that temporarily stores
intermediate data of calculations.

• PicoRV32[IMC] is a relatively complete controller.
It has I, M, C instruction subsets, and can runs the driver
code for the entire accelerator. With this embedded
processor, the workload of the external processor can be
greatly reduced.

• Simplified PicoRV32[I] is a minimized PicoRV
which only has I instruction subset. And its interfaces,
memory and fabrics are also removed or compressed to
reduce its area. It only does the configuration and control
for FPPEs.

In this work, the two PicoRV controllers are designed
to handle the whole accelerator and the FPPEs
respectively to achieve finer granular operation. However,
we can always employ similar techniques in [4-7] to
support more diversified operation in each module, as the
proposed techniques are general.

Fig. 2. Architecture of the Simplified PicoRV and FPPE

Simplified PicoRV32 processor

The simplified PicoRV32 controller is shown in the
right part of Fig.2. The instruction tightly coupled memory
(ITCM) is set to as small as 1KB because it only runs
RAM load/save and interrupt requirement (IRQ) response.
The data tightly coupled memory (DTCM) only stores a
few data, so it can also be set to less than 1KB.

Its workflow is described in Fig.3: When a calculation
pass starts, the pre-compiled FP weights order list and
encode parameters of this pass are sent to DTCM by
PicoRV. Then the simplified PicoRV configures the
Encoder with the parameters and puts the first order
number into the Encoder. The Encoder is a group of
MACs, and it combines the order number and parameters
to obtain the Index of FP weight data. When an FP weight
occurs, the input FIFO’s valid signal triggers the IRQ and
reads the encoded index. Then the simplified PicoRV put a
new number into Encoder. This process loops until the
pass over.

In the previous design, data flow and de/encoding are
controlled by fixed logic. In order to achieve functional
coverage, the design needs to be very complex and
difficult to configure. In this paper, the task of this
simplified PicoRV is fairly simple, but it can be changed
at any time. You just need to put the compiled code into its
ITCM, or even compile its task code on the spot in another
complete PicoRV. Therefore, this design achieves high
flexibility with minimal hardware complexity.
FPPE

The structure of FPPE is shown in the left part of
Fig.2. Compares with [7], we removed lots of parameters

storage and encoding logic. Because the encoding is done
by the simplified PicoRV. The FP data and encoded index
are sent to FPPE and stored in SRAM. According to the
index, the module fetches the corresponding IFmap in the
IF data flow. Then the IFmap data is then multiplied by the
FP weight data, the product of them becomes the partial
sum and save into Psums SRAM. After the MACs
operation in PE array is finished, the Psums SRAM data is
added to PE array result and sent back to GLB. Psums
data’s relative address is also extracted from the index.

Fig. 3. Code execution flow of Simplified PicoRV.
EXPERIMENTAL RESULTS

We implemented our design using Xilinx ZCU102
FPGA and UMC 40nm ASIC synthesis, respectively. The
method in [4] and [7] are also implemented for
comparison. In terms of running the neural network, the
execution speed of FPPE is related to the proportion of FP
data in the weight, and the ratio of FP is associated with
the quantification scheme. If we quantify the FP ratio to
below 10%, FPPE can quickly finish the task and not
become the bottleneck of speed. In the PE array, we use
8-bit MACs, which can undoubtedly run at a higher
frequency than the 16-bit MAC. However, it cannot
perform the speed advantage well on FPGA, and ASIC is
difficult to complete such large-scale simulation, so we
cannot objectively compare the three designs' network
speed here.

In terms of hardware scale, the advantages of our
design can be seen intuitively. Table 1 shows the resource
comparison between [4, 7] and this work. The simplified
PicoRV only use 4100 LUTs in FPGA and 23k
um2(include TCMs) in ASIC. Replacing 16-bit PE with
8-bit PE resulted in an area reduction of nearly 30%.
However, because of the complex control logic, FPPE in
[7] has a large area. This work adds a simplified PicoRV to
control the FPPE flow so that reduce the area of FPPE is
greatly reduced.
CONCLUSION

This work proposed a CNN accelerator architecture
with mixed precision processing elements. Two RISC-V
core controllers are used to control the flow, one of which
is a simplified core with an area of only 14k μm2. Due to
the simplified controller, the accelerator area is reduced by

17% and 5%, respectively, compared with that in [4] and
[7].

TABLE 1 HARDWARE AMOUNT COMPARISON
(unit: FPGA-LUTs in logic, Byte in block RAM, ASIC-μm2)

component Ref.[4] Ref.[7] This work
FPGA ASIC FPGA ASIC FPGA ASIC

PEs(x168) 265k 2452k 152k 1764k 152k 1764k
--MAC 280 1.6k 128 0.9k 128 0.9k
--storage 608B 10.8k 384B 7.8k 384B 7.8k
--logic 1313 2.2k 777 1.8k 777 1.8k
FPPEs(x14) - - 37k 377k 25k 200k
--MAC - - 280 1.6k 280 1.6k
--storage - - 1.2kB 22k 0.6kB 11k
--logic - - 2.4k 3.3k 1.5k 1.7k
PicoRV - - - - 7k 68k
--logic - - - - 7k 18k
--TCMs - - - - 4kB 50k
SimpPicoRV - - - - 4k 23k
--logic - - - - 4k 11k
--TCMs - - - - 2kB 12k
Total 265k 2452k 189k 2141k 188k 2055k

ACKNOWLEDGMENTS
This work was supported in part by Key Area R&D
Program of Guangdong Province (Grant No.
2018B030338001).
REFERENCES
[1] K. Simonyan and A. Zisserman, “Very deep

convolutional networks for large-scale image
recognition,” Proc. CVPR, 2014.

[2] K. He, X. Zhang, S. Ren, and J. Sun,“Deep residual
learning for image recognition,” Proc. CVPR, 2016.

[3] J. Deng, Z. Shi, and C. Zhuo, “Energy Efficient
Real-Time UAV Object Detection on Embedded
Platforms,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD),
vol. 39(10): 3123-3127, 2020.

[4] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze,
“Eyeriss: An energy-efficient reconfigurable
accelerator for deep convolutional neural networks,”
IEEE J. Solid-State Circuits, vol. 52(1):127–138,
2017.

[5] B. Moons, R. Uytterhoeven, W. Dehaene, and M.
Verhelst, “Envision: A 0.26-to-10 TOPS/W
subword-parallel dynamic voltage accuracy
frequency scalable convolutional neural network
processor 28 nm FDSOI,” Proc. ISSCC, 2017.

[6] J. Lee, C. Kim and et al, “UNPU: An
Energy-Efficient Deep Neural Network Accelerator
with Fully Variable Weight Bit Precision,” IEEE
Journal of Solid-State Circuits, VOL. 54(1), pp.
173–185, 2019.

[7] X. Zhou, L. Zhang and et al, “A Convolutional
Neural Network Accelerator Architecture with
Fine-Granular Mixed Precision Configurability,”
2020 IEEE International Symposium on Circuits and
Systems, 2020.

[8] RISC-V International, https://riscv.org/.
[9] PicoRV, https://github.com/cliffordwolf/picorv32.

	A CNN Accelerator WITH EMBEDDED RISC-V controllers
	Li Zhang*, Xian Zhou and Chuliang Guo

