2013 SEMICON China 3D-IC Forum

Commercializing TSV 3DIC Wafer Process Technology Solutions for Next Generation of Mobile Electronic Systems

Dr. Shiuh-Wuu Lee, Sr. VP of Technology Research & Development
Semiconductor Manufacturing International Corporation
March 20, 2013
Safe Harbour Statement

Effective Date: 16 May, 2012

Standard Disclaimer

1) For External Use:
 a) Footnote on all presentation slides

 “SMIC Confidential, All copyrights and IP belong to SMIC. For reference only and
 may not be copied or distributed without written permission from SMIC. SMIC shall
 not be responsible for any party’s reliance on these materials.”

 b) For especially sensitive materials such as guideline, earnings release and financial
 forecast etc, put a full page of “Disclaimer and Safe Harbour Statements” at the
 beginning of presentations

 DISCLAIMER AND SAFE HARBOUR STATEMENTS
 (Under the Private Securities Litigation Reform Act of 1995)

 “The following materials are confidential and constitute proprietary information of
 SMIC and may not be copied or distributed without written permission from
 SMIC. These materials are provided on “as is” basis and for your reference only.
 SMIC shall not be responsible for any party’s reliance on these materials.”
Safe Harbour Statement

This press release contains, in addition to historical information, "forward-looking statements" within the meaning of the "safe harbor" provisions of the U.S. Private Securities Litigation Reform Act of 1995. These forward-looking statements are based on SMIC's current assumptions, expectations and projections about future events. SMIC uses words like "believe," "anticipate," "intend," "estimate," "expect," "project" and similar expressions to identify forward-looking statements, although not all forward-looking statements contain these words. These forward-looking statements involve significant risks, both known and unknown, uncertainties and other factors that may cause SMIC's actual performance, financial condition or results of operations to be materially different from those suggested by the forward-looking statements, including among others risks associated with the current global economic slowdown, orders or judgments from pending litigation and financial stability in end markets.
Safe Harbour Statement

Investors should consider the information contained in SMIC's filings with the U.S. Securities and Exchange Commission (SEC), including its Annual Report on Form 20-F filed with the SEC on April 27, 2012, especially in the "Risk Factors Related to Our Financial Condition and Business" and “Operating and Financial Review and Prospects” sections, and such other documents that SMIC may file with the SEC or the Hong Kong Stock Exchange from time to time, including current reports on Form 6-K. Other unknown or unpredictable factors also could have material adverse effects on SMIC's future results, performance or achievements. In light of these risks, uncertainties, assumptions and factors, the forward-looking events discussed in this press release may not occur. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date stated, or if no date is stated, as of the date of this press release. Except as may be required by law, SMIC undertakes no obligation and does not intend to update any forward-looking statement, whether as a result of new information, future events or otherwise.
Outline

- Driving Forces for 3DIC at System & Device Levels
- TSV-based 3DIC SiP for Handheld to Wearable
- Technology Readiness across Supply-Chain
- Outweighing Controlling Factors in Solutions & Evolution
- Collaborative Supply-Chain 3DIC Foundry Model
- Closing Remarks
Evolution in Electronic System, IC Packaging & Device

Dominant Systems
- IBM “ENIAC” Computer
- PC Era
- Palm
- 2G/3G MP
- Ultra-book
- Smartphone
- Tablets
- Smart-watch
- Smart-glass

Packaging Formats
- Discrete PKG
- DIP PKG
- TSOP
- BGA
- FC-BGA
- MAP+ POP
- FC-POP
- WLP
- 2.5DSiP
- 3DSiP
- 3DIC

Si Devices & IC
- 1st CPU - um
- 1st Bipolar
- 1st IC
- 1st CMOS
- Pentium 4
- 32nm CPU (HKMG)
- A6 APU
- Quantum Devices?
- MeFET?

Timeline
- 1950
- 1970
- 1990
- 2000
- 2010
- 2020

These materials are confidential and constitute proprietary information of SMIC. These materials are for reference only and may not be copied or distributed without written permission from SMIC. SMIC shall not be responsible for any party’s reliance on these materials.
Phone-Tablet-Wearable: Core Features & Enablers

<table>
<thead>
<tr>
<th>Core Functions</th>
<th>Communication</th>
<th>Computing</th>
<th>Connectivity</th>
<th>Display & interaction</th>
<th>Battery & power management</th>
<th>Imaging & sensing</th>
<th>Key enabling factors over all functions</th>
</tr>
</thead>
</table>
| | • Multi band 2.5/3G/LTE wireless FE & baseband | • ARM core APU
 • GPU | • Bluetooth, WiFi
 • GPS, FM | • High Res, touch sense Integrated display
 • Controller/interface | • Thin high capacity battery
 • PMU supporting all IC | • High Res & video CIS
 • 10-degree motion sensing
 • Multi noise cancelling mic | • Acceptable cost
 • Thin format
 • High performance (inc LP) |
| | • Multi band 2.5/3G/LTE wireless FE & baseband | • Multicore low power APU or LP CPU
 • GPU | • Bluetooth, WiFi
 • GPS, FM | • Highest Res, touch sense Integrated display
 • Fast controller/interface | • Thin, highest capacity battery
 • PMU supporting all IC | • High Res & video CIS
 • 10-degree motion sensing
 • Multi noise cancelling mic | • High performance
 • Acceptable cost
 • Thin format |
| | • Multi band 2.5/3G/LTE wireless FE & baseband | • ARM core APU
 • GPU | • Bluetooth, WiFi
 • GPS, FM | • Projection, bright & mini display
 • Voice control interface | • Compact high capacity battery
 • 1 PMU mini overall power | • Ultra compact camera
 • 10-degree motion sensing
 • Mini N/S cancelling mic’s | • Ultra small, thin
 • Ultra low power
 • Acceptable cost |
Evolution of IC & Electronic System Integration

<table>
<thead>
<tr>
<th>Now</th>
<th>Further</th>
<th>Related Technology Enhancements</th>
<th>TSV 3DIC: Pro & Con</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominant Driving of Systems</td>
<td>Smartphone Tablet</td>
<td>e-Wearable's: Smart-watch Smart-glass</td>
<td></td>
</tr>
<tr>
<td>Trend: IC & Subsystem Packaging</td>
<td>PoP, MCM, Discrete on PCB</td>
<td>More “3D” SiP on PCB, less discrete & isolated MCM</td>
<td>++</td>
</tr>
<tr>
<td>IC Devices & Fabrication</td>
<td>HKMG to FinFET</td>
<td>FinFET bulk Si, SOI</td>
<td>++</td>
</tr>
</tbody>
</table>

- **Pro**: Better device variation management
- **Con**: Decouple logic with MS/RF to 2 chips, maybe at different nodes or technologies

These materials are confidential and constitute proprietary information of SMIC. These materials are for reference only and may not be copied or distributed without written permission from SMIC. SMIC shall not be responsible for any party’s reliance on these materials.
Example: Chips to SiP Grouping on Smartphone PCB

<table>
<thead>
<tr>
<th>Front Side</th>
<th>MCP/SiP</th>
<th>TSV SiP Opt</th>
<th>Back Side</th>
<th>MCP/SiP</th>
<th>TSV Opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>WiFi module</td>
<td>WiFi Combo wireless processor WIFI FE</td>
<td>May use TSV SiP but costly</td>
<td>APU</td>
<td>DRAM MCP</td>
<td>TSV Wide I/O best option but costly & manufacturability</td>
</tr>
<tr>
<td>3-axis gyro</td>
<td>MEMS+ASIC SiP</td>
<td>TSV SiP: thinner, better noise isolation</td>
<td>LTE Baseband Processor</td>
<td>PMIC on front-side connected through PCB</td>
<td>Split logic potion with MS/RF to two chips, 2.5D SiP</td>
</tr>
<tr>
<td>3-axis accelerometer</td>
<td>MEMS+ASIC SiP</td>
<td>Combo SiP: Single chip</td>
<td>Audio Chips</td>
<td>1/2 Chip MCP</td>
<td>May stay separated for noise isolation</td>
</tr>
<tr>
<td>Touch screen controller</td>
<td>BCM interface</td>
<td>Performance gain but costly</td>
<td>Imaging Sensor Camera Module</td>
<td>8 or 13M BSI</td>
<td>Can further thinner WL camera module</td>
</tr>
<tr>
<td>GSM/GPRS/EDGE PA</td>
<td></td>
<td></td>
<td>Microphones</td>
<td>3 in different packages & sites</td>
<td>No help</td>
</tr>
<tr>
<td>CDMA PA</td>
<td>SiP with matching switches, IPD, LNA</td>
<td>TSV SiP for PA module: improving noise performance, but cost needs justification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSM PA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTE PA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiband FE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCDMA PA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Device Level: Alternative “Process Integration”

- Dedicated memory MOS
 - Better fine pitch dense array & OPC
 - Optimized implants & thermal budget

- Dedicated specialty MOS
 - Gross litho CD & variable patterns
 - Specialized implants & analog tuning

- Enhanced, dedicated CMOS (FinFET) design
 - Better ultra fine CD & OPC control
 - Simplified baseline implants & thermal budget

- HS/LP dominant (to FinFET)
 - Ultra fine CD, fine array
 - Baseline implants & constrained thermal budget

- 2 Poly Cell
 - Fine pitch stacked array
 - Special implants & thermal budget

- Specialty MOS
 - Large CD range & patterns
 - Special implants & analog performance

These materials are confidential and constitute proprietary information of SMIC. These materials are for reference only and may not be copied or distributed without written permission from SMIC. SMIC shall not be responsible for any party's reliance on these materials.
1. FEOL CD => ~10nm, BEOL CD ~10’s nm; narrowing long on-chip interconnects
2. IMD advance (LK => ELK) cease & limit further RC reduction
Readiness in Supply Chain for Manufacturability

<table>
<thead>
<tr>
<th>Via-Mid Front-end</th>
<th>TSV-mid litho</th>
<th>TSV-mid etching</th>
<th>TSV-mid isolation</th>
<th>Barrier/seed DEP</th>
<th>TSV ECP</th>
<th>Post ECP Cu CMP</th>
<th>BEOL/FS-RDL/Bump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundry process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capability vs. spec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Window & Uniformity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tool maturity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Running cost & throughput</td>
<td>Acceptable for risk run</td>
<td>Ready for pilot</td>
<td>Mature 4 mass production</td>
<td>Close to acceptable</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Via-Mid Middle-end</th>
<th>Stacking & Bonding</th>
<th>Temp bond to carrier</th>
<th>Thinning /grinding</th>
<th>TSV reveal</th>
<th>Carrier debonding</th>
<th>Inspect & metrology</th>
<th>WL & SiP Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSAT Process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CtC</td>
<td>CtW</td>
<td>WtW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capability vs. spec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window, Unif’ty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tool maturity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Running cost & throughput</td>
<td>Not ready</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These materials are confidential and constitute proprietary information of SMIC. These materials are for reference only and may not be copied or distributed without written permission from SMIC. SMIC shall not be responsible for any party’s reliance on these materials.
TSV 3DIC Implementation Roadmap: Pro & Con

<table>
<thead>
<tr>
<th>Key Pro Factors</th>
<th>Key Con Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Data speed</td>
<td>• KGD</td>
</tr>
<tr>
<td>• PKG thickness</td>
<td>• Cost</td>
</tr>
<tr>
<td>• Yield</td>
<td>• Technical feasibility</td>
</tr>
<tr>
<td>• Speed</td>
<td>• TSV-CMOS</td>
</tr>
<tr>
<td>• PKG thickness</td>
<td>• I/O interface</td>
</tr>
<tr>
<td>• Wafer process</td>
<td>• Cost (unless performance justified)</td>
</tr>
<tr>
<td>• Noise isolation</td>
<td>• Difficult for large format chips</td>
</tr>
<tr>
<td>• PKG thickness</td>
<td>• Cost reduction thru WLP</td>
</tr>
<tr>
<td>• Noise isolation</td>
<td>• Functional requirements</td>
</tr>
<tr>
<td>• Cost reduction thru WLP</td>
<td>• Cost reduction thru WLP</td>
</tr>
<tr>
<td>• Technical feasibility</td>
<td>• Difficult for large format chips</td>
</tr>
</tbody>
</table>

These materials are confidential and constitute proprietary information of SMIC. These materials are for reference only and may not be copied or distributed without written permission from SMIC. SMIC shall not be responsible for any party’s reliance on these materials.
3DIC Commercialization: Key Paradigm Factors

Research & Pathfinding domain

Boosting Performance
- Speed/bandwidth
- Power reduction

Development & improvement domain

Reducing Form Factor
- Thinner
- Smaller

Better Manuf’bility
- Overall cost
- Supply chain readiness

Existing technology: PoP SiP on substrate

Competing technology: Thru-Glass Interposer To TSV 2.5D Interposer

Commer-Cialization domain

These materials are confidential and constitute proprietary information of SMIC. These materials are for reference only and may not be copied or distributed without written permission from SMIC. SMIC shall not be responsible for any party’s reliance on these materials.
Emerging Mid-End & Two Ecosystem Models

- Technical spec (DR, etc) & hand-off: must shared from FE, ME, BE to system
- Productization & commercialization only verified along full line down to system level
- Foundry & OSAT best to leverage existing differentiating but matching core strength & capability over ME, extended from FE and BE respectively

"VERTICALLY INTEGRATED" wafer + package manufacturing foundries

"COLLABORATIVE" supply-chains between wafer foundries & packaging subcontractors

"VIRTUAL IDM" new ecosystems

Courtesy of Yole
Collaborative Full 3DIC Foundry Services

<table>
<thead>
<tr>
<th>Key Competency & Services</th>
<th>IC Design</th>
<th>Devices on Wafer Fab & WL Testing</th>
<th>Wafer Level Packaging</th>
<th>Chip to System Packaging & Testing</th>
<th>System & Board Assembly</th>
<th>(Sub) System Design & Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDM’s Or wafer + WLP + P&T</td>
<td>Complete vertical integration</td>
<td>Full foundry model</td>
<td>Ext Service Or sub con</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fab-lite & fabless</td>
<td>Core Value & Strength</td>
<td>Extended engineering design for sub con</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMOS Wafer Foundry</td>
<td>Design Service</td>
<td>Core Value & Strength</td>
<td>TSV Via-mid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WLP Partner</td>
<td>Ext Serv</td>
<td>Core Value & Strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chip & SiP & Testing Partner</td>
<td>Collaborative 3DIC Foundry Model</td>
<td>Expanded service</td>
<td>Core Value & Strength</td>
<td>Ext Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Assembler & User</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These materials are confidential and constitute proprietary information of SMIC. These materials are for reference only and may not be copied or distributed without written permission from SMIC. SMIC shall not be responsible for any party’s reliance on these materials.
Closing Remarks

Systems towards mobile wearable fundament to driving supply chain to TSV 3DIC development & commercialization

• Mobile, handheld to wearable inevitable, the dominant trend
• Main electronic boards forced to shrink in size and thickness
• Core & peripheral chips continue to regroup to smaller, thinner SiP; isolated functional chips thinner, smaller; discrete devices to consolidate into SiP or SoC

Miniaturization, performance boost and overall manufacturing cost: tri-driving and limiting factors in paradigm of commercialization

• Scenario 1: performance gain outweighing increase in overall cost
• Scenario 2: 3D WLP and miniaturization also reducing overall cost
• Scenario 3: ultra thin becoming must for system & SiP integration

Collaborative TSV 3DIC foundry service: adequate model to address overall supply chain manufacturability & costs

• Leverage available R&D resources of accumulated expertise, manufacturing lines, minimize overall capital investment and running costs
• Sustain & growth supply-chain ecosystem in collaborative evolution
Thank You
Semiconductor Manufacturing International Corporation
SMIC
Q&A
谢谢各位