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ABSTRACT 
We report a monolithic three-dimensional integration 

of dendritic neural network (M3D-DNN) with 

memristors-based artificial synapse, dendrite and soma on 

top of Si-based CMOS logic. The Si CMOS layer served 

as control logic fabricated in foundry. A 1k-bit artificial 

synaptic array was built with HfO2-based nonvolatile 

memristors to implement computing-in-memory (CIM). 

In addition, TiOx-based memristive artificial dendrite and 

NbOxNy-based memristive artificial soma were adopted to 

implement the dendritic neuron (DN) layer to process 

postsynaptic signals. Both the CIM and DN layers were 

fabricated using a BEOL-compatible process. The 

structural integrity and proper function of each layer in the 

M3D-DNN were verified. Our work demonstrates a 

promising architecture to efficiently implement 

bio-plausible artificial neural networks (ANNs). 
 

INTRODUCTION 
The rise of artificial intelligence (AI) with deep 

learning demands for ever increasing computing power 

and energy efficiency. This imposes critical challenges for 

conventional computing hardware based on von Neumann 

architecture. Inspired by human brain, neuromorphic 

computing with bio-mimicking devices, such as 

memristors, emerges as a promising paradigm to break the 

von Neumann bottleneck and build energy-efficient AI 

chips [1]. Tremendous progress has been made in the past 

decade to use various memristors to implement ANNs 

with orders of magnitudes higher energy efficiency than 

CPU and GPU [2-4]. Most prior works have been focused 

on memristor-based artificial synapses with the advantage 

of CIM. It should be noted that, besides synapse, dendrite 

and soma also play vital roles in the signal processing in 

biological neural networks. Their functions, such as the 

signal filtering and nonlinear integration of dendrite, are 

indispensable for the extremely low power of human brain. 

Recently, a novel dendritic neural network (DNN) with 

memristors-based artificial synapse, dendrite and soma 

was proposed as a more bio-plausible ANN. A board-level 

DNN system was built to demonstrate the classifications 

of both static images and dynamic human motions [5-6], 

exhibiting significant advantages in accuracy and energy 

efficiency by incorporating dendrites. 

In this work, inspired by the 3D nature and complex 

topography of brain, we demonstrate an M3D-DNN with 

memristors-based artificial synapse, dendrite and soma on 

top of Si-based CMOS logic. The ultra-dense inter-layer 

vias (ILVs) in M3D could facilitate the high bandwidth 

data transfer across different layers with significantly 

reduced latency and power consumption. The memristor 

devices were carefully optimized for these three critical 

computing units to fulfill their functions.  

Figure 1: The architecture of M3D-DNN and its 

correspondence with biological neural network. 
 

FABRICATION OF M3D-DNN 
To start, the Si CMOS layer was fabricated using a 

standard 130nm CMOS foundry process for logic and 

control. The process was stopped at M4 with W vias 

exposed after chemical mechanical polishing (CMP). The 

CIM layer was then fabricated with TiN/TaOx/HfO2/TiN 

memristors. The 8nm HfO2 serving as the resistive 

switching layer was deposited by atomic layer deposition 

(ALD) at 300 °C, followed by sputtering 45nm TaOx 

serving as the thermal enhanced layer. The TiN top and 

bottom electrodes (TE and BE) were deposited by 

sputtering. The memristors were then patterned by 

reactive ion etching (RIE) and passivated. 

After that, the DN layer consisting of Ti/TiOx/Pd 

dendrite devices and Pt/Nb/NbOxNy/Pd soma devices was 

fabricated. First, 50nm Pd was evaporated as the BE of 

dendrites. 30nm TiOx was sputtered using Ti target in 

Ar/O2 followed by deposition of 30nm Ti as the TE of 

dendrite. Next, Pd was evaporated as the BE of soma. 

Then, 50nm NbOxNy was sputtered using Nb target in 

Ar/O2/N2 followed by the deposition of 10nm Nb. The 

proportion of Ar, O2 and N2 was strictly controlled and the 

thin Nb interface layer improved the yield of soma devices 
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[6-7]. Finally, Pt was deposited as the TE of soma. The 

process flow and chip images are presented in Figure 2. 

Figure 2: (a) The fabrication process flow of M3D-DNN. 

(b) Photo of the fabricated chip. Scale bar is 2 mm. (c) 

Optical image of memristors. Scale bar is 100 um. (d) 

Cross-sectional image of each layer. Scale bar is 2 um. (e) 

TEM image of HfO2-based artificial synapse in the CIM 

layer (f) TEM image of TiOx-based artificial dendrite and 

(g) NbOxNy-based artificial soma in the DN layer. Scale 

bars in (e), (f), (g) are 50 nm.  
 

CHARACTERIZATIONS OF M3D-DNN 
Electrical properties of each layer in the chip were 

measured. Figure 3a shows the analog switching 

characteristics of the memristive synapse in the CIM layer. 

Figure 3b presents the programmability of 8 representative 

conductance states (~3bits) read for 100 cycles, where 64 

devices were measured for each state. Figure 3c-d show 

the mapping result and corresponding error of a 32×32 

matrix using the 1k-bit one-transistor-one-resistor (1T1R) 

synaptic array. These results confirm the excellent analog 

switching characteristics of artificial synapses. 

Figure 3: (a) Analog switching characteristics of a typical 

cell in the 1T1R synaptic array. (b) Read noise of 8 states. 

(c) Mapping result Gmapping and (d) corresponding error 

Gerror when mapping a 32×32 matrix in the 1k-bit array. 
 

For the DN layer, we first characterized the dendrite 

device as shown in Figure 4. The device remained off 

when applying a voltage below the threshold (~3V), and 

turned on when the bias went above the threshold (e.g. 4V) 

[5]. It also exhibited a nonlinear current integration 

behavior resembling biological dendrite (Figure 4b). 

Figure 5a-b illustrate the relatively small cycle-to-cycle 

and device-to-device variability. Figure 5c depicts the 

dendrite device size dependence of the current response, 

confirming the interfacial switching mechanism. It also 

provided a knob to tune the device resistance to match 

with the soma device in the DN unit. 

 
Figure 4: (a) Current response of the artificial dendrite 

device in the off and on states, exhibiting a filtering 

property. (b) Current response of the dendrite device, 

showing a nonlinear integration behavior. 

Figure 5: (a) Measured 30 cycles of a typical dendrite 

device with the size of 3um×3um under a 1ms pulse.  (b)  

Measured 10 devices with the same size of 3um×3um. (c) 

I-V characteristics of dendrite devices with different sizes. 
 

Furthermore, Figure 6a shows the threshold firing 

property of the soma device with a large window (~1V) 

between the threshold voltage (Vth) and hold voltage 

(Vhold). Besides, oscillation neuron characteristics were 

also demonstrated in Figure 6b-c. As the bias voltage 

increased, the oscillation frequency also increased linearly. 

The stable oscillations indicate low variability in Vth and 

Vhold, thanks to the N dopants in the NbOxNy layer that 

help confine the migration of oxygen vacancies [7]. 



NEURAL NETWORK SIMULATION 
Using the above characterized artificial synapse, 

dendrite and soma units, a bio-plausible DNN can be 

implemented as illustrated in Figure 7a-b. Figure 7c shows 

the neuron-firing rate using the street-view house numbers 

(SVHN) dataset to benchmark the performance of our 

M3D-DNN. A high accuracy of ~89.7% was achieved by 

incorporating artificial dendrite, which helps improve the 

accuracy and reduce power consumption [5]. Figure 8 

reveals that M3D-DNN could achieve 2923× lower power 

consumption than GPU and 4.3× faster speed than 2D 

baseline owing to ultra-dense ILVs and ultra-high on-chip 

bandwidth in M3D architecture [5,8-10].  

Figure 6: (a) I-V characteristic of a soma device with the 

size of 10um×10um. (b) Output waveforms of the 

oscillation neuron circuit under 100us-wide pulses with 

amplitudes of  3.0 V, 2.4V and 2.3V. (c) Oscillation 

frequency of the neuron circuit (R=3kΩ) under different 

Vbias. 

Figure 7: (a) Schematic of the implemented DNN where 

synapses represent tunable weights, dendrites process 

hierarchical post-synaptic information and somas provide 

the integration and firing function to yield the final output. 

(b) The equivalent circuit model. (c) Firing rate and 

recognition accuracy of SVHN dataset for M3D-DNN. 
 

Figure 8: (a) Power consumption benchmark of 

M3D-DNN and GPU executing the same network. (b) 

Execution time of M3D-DNN and 2D baseline.  
 

CONCLUSION 
To sum up, we have designed and fabricated an 

M3D-DNN chip with HfO2-based memristive synapse in 

the CIM layer, TiOx-based dendrite and NbOxNy-based 

soma in the DN layer on top of Si CMOS logic layer. 

These three different types of memristors were carefully 

engineered to be compatible with BEOL process. 

Structural integrity and electrical properties were 

characterized to verify the performance of M3D-DNN. 

The presented M3D-DNN architecture could endow 

neuromorphic computing hardware with enhanced 

performance as well as significantly reduced energy 

consumption and latency. 
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