THE CAMFIL GROUP

AMC Control and Energy Cost Optimization for Advanced Fabs

SEMICON China 2017—Green High-Tech Facility Forum Camfil Filtration March 15th, 2017

Energy Cost & LCC Optimization

2

AMC filters are installed in various locations within a Fab

Organic AMC are driving cost of AMC control

	ACIDS B		ASES	DOPANTS			RE	REFRACTORIES				
	MA	MA		MB			MD		MR			
	HF, hydrogen flu	oride	NH	3, ammonia		TEP, triethyl phosphate		ORGANICS	, triethyl phosphate	ORG	SANICS	
	HCI, hydrogen ch	HCI, hydrogen chloride NMP, N-r		nethyl pyrrolidone		TCEP, Tris(chloroethyl) phosp		hate TMS, trimethyl silanol				
	SO2, sulfur dio	SO2, sulfur dioxide		atter amine		BE3_borph trifluoride		Hexamethyldisiloxane				
	CH3COOH, aceti	_{c acid} ORG	SANIC ACID	S yl amine	ORGA		ASES	boric acid	D4, Octa	methylcyclotetrasilox	ane	
	H2S, hydrogen s	ulfide	Eth	anol amine			PH3,	phosphine	Te	etrachloroethylene		
	Table 4: Example of AMC following SEMI F21-1102 stand				lard and new categories following later developments.							
	Category of org	Category of organic contamination Volatile organic compounds		AMC			Boiling point (°C)		Remark			
	Volatile organic compou			IPA, Isopropanol			82		Common cleaning agent			
O	RGANICS			Heptane			98		Higher boiling point than benzene but elute before.		lute	
	Volatile organics according to ITRS definition. GC-MS retention time >= benzene		Benzene			80		Vehicle exhaust co	ontamination			
				Toluene			111					
				Butanol			117					
		Xylene			140		hicle exhaust co	ontamination	Δ			
ORGANICS			PGMEA			146	POINT	pcess chemical. Often considered conde		CONTROL		
	MC: Condensable organics according to SEMI and ITRS definition			Ethyl lactate			154	INCREAS	ocess chemical			COST NCREASI
				Trimethyl be	enzene		165		Common traffic co	ontamination		
				NMP, N - me	ethyl pyrroli	idone	204		Process chemical			
CC	ONDENSABLE			Triethyl pho	sphate		215		Fire retardant			
OF	RGANICS			BHT, butylat toluene	ed hydroxy	/	265		Plasticizer			
				Diethyl phth	alate		298		Plasticizer			
				DOP, Diocty	l phthalate		385		Plasticizer, Test a	erosol for ULPA filters		

Table 5: Example of organic AMC following SEMI F21-1102, ITRS definitions and a more general definition for volatile organic compounds

4

Various AMC are present at each production process of a wafer 5

Challenges of AMC Control in Advanced Fabs

- Technology node has reached <u>14nm</u> and below (<u>7nm</u>) for advanced fabs; approximately 10 organic molecules side by side;
- Wafers go through 100s of different processes, each small contamination impact in any process will have serious consequences on the overall yield;
- Foundries are the most affected due to the diversity of processes and products produced within one facility.

6

Selection of high performance filter becomes critical

- New metrology challenges as **dimensions** shrink. Hard to separate wafer defects from background noise. Need to remove the noise with AMC filtration;
- Wavelength and optics are changing in metrology equipment. Need AMC protection identical to DUV lithography scanners in the past;
- VOC removal is a challenge due to cross contamination issues and filtration technology limitations;

7

Leak free filters are critical to the performance of an AMC filter

- Difference configuration or arrangement of the media layer will affect the overall filter pressure drop.
- A filter with high leakage rate will impact the removal efficiency significantly.

8

Filter performance test data as per ISO 10121-2:2014 – key to ⁹ selection of high efficiency filters

INTERNATIONAL ISO 10121-2 STANDARD

First edition 2013-04-01

Test methods for assessing the performance of gas-phase air cleaning media and devices for general ventilation —

Part 2: Gas-phase air cleaning devices (GPACD)

Méthodes d'essai pour l'évaluation de la performance des médias et des dispositifs de filtration moléculaire pour la ventilation générale — Partie 2: Dispositifs de filtration moléculaire (GPACD)

Molecular Filter Test Rig According to ISO 10121-2: 2014¹⁰

Filter selection based on actual simulation

O US - unit

🕜 Clean Room 📑 Solutions 🚹 Result & Graph

SL-unit

Simulation software for AMC concentrations in Clean Room

AMC Type:

Α

11

Clean air solutions

💨 CLEAN-ANC

UNIT:

Project Info

Other Analytical Services

Media Challenge Test as per ISO 10121-1:2014

Air Quality Analysis

Media analysis

Online Monitoring

Filter Outgassing Analysis

Summary

- AMC control becomes critical in advanced Fabs where the technology node reaches 60nm and below.
- Filter product performance for AMC and nanoparticles is more critical than ever.
- Filter outgassing / cleanliness must improve for high end facilities.
- High efficiency filter selection should be based on filter performance test in a ISO 10121-2 test rig and simulation results in a clean room

Particle filters are installed in various locations within a Fab

The energy cost of ventilation (simplified)

Calculation formula of energy cost

$$E = \frac{q \times dP \times t}{\eta \times 1000}$$

Ε	=	Energy cost	[kWh /year]
q	=	Airflow	[m ³ /s]
dP	=	Pressure drop	[Pa]
t	=	Operation time	[hours/year]
η	=	Fan efficiency	[0.2~0.7]

Example : Semiconductor Fresh Air Handling Unit

Item	Pressure Drop (Pa)		
Ducts (inlet- plus outlet air)	500	38%	
Filters (Pre/Sec/AMC/AMC/HEPA)*	650	50%	>
Cooling coils	60	5%	
Heater	50	4%	
Sound reduction (inlet- plus outlet air)	40	3%	
Joint duct	10	1%	
*Average	1310		

A low filter pressure drop over its entire service life is the key to a low energy cost.

Impact of filter's final dP

LCC calculation with different replacement methods

Replacement methods	Fixed Period (pre-2 months, Fine-4 months)	2 x initial dP	Recommended dP (pre-180Pa,fine- 350Pa)		
G4 Lifetime	1280h	550h	870h		
F7 Lifetime	2920h	2930h	4650h		
Filter cost of 5Y/CNY	11000	15500	10100		
Energy cost of 5Y/CNY	19880	13538	18346		
LCC*	30880	29028	28446		

* by LCC simulation software

An example of the importance of correct filter area.

Lifetime

Design Highlights of A+ filter

A low filter pressure drop over its entire service life is the key to a low energy cost.

Eurovent A+ Air filtrer

Save at least 20% energy cost with A+ filter

Classification of energy cost by Eurovent

Energy efficiency class limits for each filter class / kWH

Class	M5	M6	F7	F8	F9
A+	<450	<550	<800	<1000	<1250
Α	600	650	950	1200	1450
В	700	800	1200	1500	1900
С	950	1100	1700	2000	2600
D	1200	1400	2200	3000	4000
Е	>1200	>1400	>2200	>3000	>4000

CLEAN AIR SOLUTIONS

Camfil is in the unique position to offer a total clean air concept to follow the most difficult challenges to come in semiconductor manufacturing!

THANK YOU!

